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Executive Summary: 

The goal of this project is to build integrated habitat models for Gulf of Mexico marine mammals using 

visual survey data, and passive acoustic monitoring data.  Effective marine mammal population 

management requires the ability to predict species distributions in space and time. Primary marine 

mammal population assessment methods include visual surveys which provide good spatial coverage, but 

limited temporal resolution, and passive acoustic monitoring, which produces good temporal resolution 

with limited spatial coverage.  We explore methods for using both datasets in tandem to train and test 

habitat models capable of robust spatial and temporal predictive power. Neural networks are proposed as 

a promising strategy for this type of combined learning problem, and results are presented for seven 

marine mammal groups including sperm whales, beaked whales and delphinids. The final models and 

associated information will be made available in a publically accessible online format, for use in 

management and decision making applications. 

 

Introduction  

Conservation and management of cetacean populations requires an understanding of temporal and spatial 

trends in abundance to predict population responses, quantify trends and mitigate negative impacts (Best 

et al., 2012; Redfern et al., 2006).  The deep water Gulf of Mexico (GoMx) provides habitat for a diverse 

array of pelagic cetaceans including sperm whales, beaked whales, Kogia and a variety of delphinids. 

These species, which live beyond the continental shelf, are thought to represent the majority of GoMx 

cetaceans in terms of total numbers (R. W. Davis et al., 2002; Fulling, Mullin, & Hubard, 2003) however 

the temporal trends and spatial distributions of these populations are poorly understood due to the many 

challenges of offshore marine mammal surveys. 
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Shipboard and aerial line-transect surveys are the standard method for estimating abundance and 

describing the distributions of cetacean populations (Barlow & Forney, 2007; R. Davis et al., 1998; 

Fulling et al., 2003; K. Mullin & Fulling, 2003, 2004; K. Mullin & Hoggard, 2000). This method relies on 

sightings at the sea surface. Visual surveys provide broad spatial coverage of the Gulf region at a snapshot 

in time. Some temporal coverage can be obtained if multiple surveys are combined over many years. 

However, visual methods are resource intensive, requiring extensive vessel/aircraft and personnel time. 

They also rely on fair weather conditions, therefore most visual survey effort in the GoMx has occurred in 

summer months, with least survey effort occurring in winter months (Best et al., 2012; Maze-Foley & 

Mullin, 2007; K. D. Mullin, 2007). 

Static passive acoustic monitoring (PAM) provides a complimentary modality for cetacean monitoring; 

this approach employs acoustic sensors at fixed sites but provides a nearly continuous record of animal 

presence at monitored locations.  This method relies on underwater detection of species-specific 

vocalizations.  Passive acoustic monitoring data has been collected in GoMx since 2010 using fixed 

seafloor sensors.  The time series from acoustic monitoring sites provide excellent temporal coverage, 

operating continuously regardless of weather conditions or time of day. However spatial coverage is 

limited, because sensor locations are fixed and detection ranges are restricted by the acoustic 

characteristics of the vocalizations monitored. 

Visual survey and PAM datasets have been used independently to predict marine mammal distributions 

across space and time under varying oceanographic conditions, however the limitations of each survey 

modality respectively result in an incomplete picture of habitat use by marine mammals.  We describe a 

pilot study examining the feasibility of combining visual and acoustic data into joint habitat models 

capable of leveraging both the spatial coverage of visual survey data and the temporal coverage of static 

PAM data collected in the Gulf of Mexico. Joint habitat models were developed for seven species or 

genera. 

Methods 

Visual Survey 

Visual survey data were collected during five cruises conducted by the National Oceanographic and 

Atmospheric Administration Southeast Fisheries Science Center (NOAA SEFSC) aboard the R/V Gordon 

Gunter in 2003, 2004, 2009, 2012, and 2014 (Figure 1).  These cruises were designed to survey the deep 

water GOM, therefore the survey area was delimited by the 200m bathymetric contour to the north, west, 

and east, and by the limit of the US EEZ to the south.  Cruises conducted in 2012 and 2014 were limited 

to the Eastern GOM. Cruise data from 2009 was used only for model for testing, while other years were 

used for training.  Pre-2003 visual survey data is available but was not used due to lack of HYCOM 

environmental parameter estimates for earlier years.  

Visual survey data were re-coded as presence or absence of each species along 10km segments of on-

effort transects.  Some transect segments were shorter than 10km, and this was accounted for by 

computing an area A surveyed as 

𝐴 =  2𝑤𝐿 
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where L is the transect segment length in km, and w is the truncation distance in kilometers, calculated as 

the distance from the transect line within which 95% of the species of interest occurred (Laake, Borchers, 

Thomas, Miller, & Bishop, 2015). Survey effort speed was >= 10 knots.  

 
Figure 1. Map of visual and passive acoustic survey data locations used in this study.   

 

Passive Acoustic Monitoring 

Passive acoustic monitoring data were collected from five sites in the GoMx between 2011 and 2013 

(Figures 1 & 2).  Three deep slope sites were used for deep-diving species including sperm whales, 

beaked whales and Kogia. An additional two shelf sites were used for delphinid species. Data from 2011-

2012 was used for model training, with 2013 data held back for testing.  Echolocation clicks were 

detected as and manually reviewed by analysts to ensure low false positive and misclassification rates (J. 

A. Hildebrand et al., submitted). 

Encounter data was recoded as presence-absence in one day bins.  Acoustic area surveyed was estimated 

as: 

A = π ∙ 𝑤2 

Truncation distances were estimated as range within which 95% of detections were expected to occur 

based on species-specific detection range simulations (Frasier et al., 2016; J. Hildebrand et al., 2015; J. A. 

Hildebrand et al., submitted).   
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Figure 1. Cuvier’s beaked whale density at HARP sites from 2011 to 2014 estimated from passive 

acoustic monitoring data. 

 

Environmental Parameters 

Environmental data were primarily accessed through the Marine Geospatial Ecology Toolkit (MGET; 

Roberts, Best, Dunn, Treml, & Halpin, 2010) in ArcGIS.  Covariates examined included sea surface 

height (SSH), sea surface temperature (SST), chlorophyll A, distance to nearest eddy, distance to nearest 

front, mixed layer depth, upwelling speed, salinity, and surface current magnitude (Table 1). 

 

Habitat Modeling 

Habitat models were produced for seven genera or species including sperm whale (Physeter 

microcephalus), Cuvier’s beaked whale (Ziphius cavirostris) Gervais’ beaked whale (Mesoplodon 

europaeus), Risso’s dolphin (Grampus grisues), pygmy/dwarf sperm whale (Kogia spp.), pelagic stenellid 

dolphins (Stenella spp.), and pilot whales (Globicephala spp.).  Species selection and grouping was based 

on the availability of both visually and acoustically distinctive features.  Sperm whale, Cuvier’s and 

Gervais’ beaked whale and Risso’s dolphin are distinguishable both visually based on size, markings and 

body shape and acoustically based on characteristic features of their echolocation clicks.  Kogia species 
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are not visually distinguishable during visual surveys, therefore they were modeled together. Similarly, 

short and long-finned pilot whales are difficult to distinguish visually in the field. Long-finned pilot 

whales have not been conclusively identified in the GOM, therefore primarily short-finned pilot whales 

are expected.  Pilot whale echolocation clicks have been tentatively identified in the in acoustic record 

(Frasier et al. 2017). Pelagic stenellid dolphins (genus Stenella) are the most common pelagic delphinids 

in the GoMx. This group consists of five species species with similar click types which were modeled 

together including spinner (Stenella longriostris longirostris), Clymene (Stenella clymene), pantropical 

spotted (Stenella attenuata), Atlantic spotted (Stenella frontalis), and striped dolphins (Stenella 

coeruleoalba).  

 

Model Implementation 

A variety of modeling frameworks were evaluated for suitability, including GEE GLM, GAM, GAMM, 

and neural networks.  After extensive evaluation, we were most satisfied with the few assumptions and 

overall simplicity of neural networks for this case. 

Neural networks were implemented using avNNet in the caret package (Kuhn et al., 2017), which allows 

multiple iterations to be run within a multi-fold framework and can be used to compute an average 

network across many training iterations. Critically, this package also implements case weights, such that 

some training data points can be given more weight than others. This was a key part of integrating the two 

datasets. Each observation Oi, for i in the set of observations N, was weighted in joint models according to 

spatial and temporal coverage using the following formula: 

𝑊(𝑂𝑖)  =  
𝐴(𝑂𝑖)  ∙  𝐷(𝑂𝑖)

1
𝑛

∑ 𝑚𝑒𝑎𝑛(𝐴(𝑂𝑖) ∙  𝐷(𝑂𝑖))𝑛
𝑖=1

 

where D is the duration of the observation period, and n is the number of observations in N.  

Further, zeros in the visual data were down-weighted to account for the probability of observing animals 

at the sea surface (G0) as 

𝑊𝐺0(𝑂𝑖) =  {  
𝑊(𝑂𝑖)  if   𝑂𝑖 >  0

𝐺0𝑊(𝑂𝑖)  if   𝑂𝑖 =  0
 

Species-specific G0 estimate were calculated from double-blind visual surveys (Palka, 2006).  

 

Bagging was used to reduce network overtraining, and tested hidden layer sizes ranging from 2-14 nodes.  

A single, fully-connected hidden layer was used. We used a node weight decay of 1e4, with maximum 

conditional likelihood as the cost function, and randomly initialized node weights from -0.7 to 0.7.  

Models were compared using weighted cross-entropy to compare predicted and observed 

presence/absence in the test data. The hidden layer size that minimized the cross entropy on the test 

dataset after 50 training iterations was selected as the best network configuration.  
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Results 

Environmental Variability 

The range of oceanographic variables observed differed between the visual and PAM survey methods 

(Table 1). Visual survey track lines across the GoMx surveyed within loop current-associated features and 

eddies more often than PAM sensors, and therefore traversed a wider range of sea surface heights and 

current magnitudes.  By monitoring year-round, PAM sensors observed a wider range of sea surface 

temperatures, mixed layer depths, and chlorophyll A concentrations. Similar ranges of salinity and 

vertical transport velocity were observed by the two methods. 

 

Table 1. Comparison of environmental variability observed in the visual survey and PAM datasets.   

Oceanographic 

Variable 

Survey 

Method 

Mean    [5th
 , 95th percentile] Data source 

Sea Surface 

Temperature (⁰ C) 

Visual  

Acoustic 

28.39  [23.22, 30.41 ] 

25.57  [20.46, 30.17] 

GHRSST Level 4  

(JPL MUR MEaSUREs 

Project, 2015) 

Sea Surface Height 

Anomaly (m) 

Visual  

Acoustic 

0.06  [-0.20, 0.44] 

0.06  [-0.08, 0.20] 

JPL  

(Zlotnicki, Qu, & 

Willis, 2016) 

Salinity (PSU) 
Visual  

Acoustic 

35.3  [33.8, 36.1] 

34.9  [33.1, 36.2] 

HYCOM  

(Chassignet et al., 

2009) 

Mixed Layer Depth (m) 
Visual  

Acoustic 

10.9  [2.2, 29.2]  

21.2  [2.4, 59.3 ] 

HYCOM  

(Chassignet et al., 

2009) 

Distance to Nearest 

Eddy (km) 

Visual  

Acoustic 

70.9  [0.0, 185.2 ] 

136.9   [37.1, 284.8] 

Derived from JPL 

(Zlotnicki et al., 2016) 

Surface Current 

Magnitude 

Visual  

Acoustic 

0.54  [0.10, 1.41]  

0.29  [0.07, 0.63] 

HYCOM  

(Chassignet et al., 

2009) 

Chlorophyll A 
Visual  

Acoustic 

0.196  [0.062, 0.525]  

0.678  [0.102, 3.223] 

NASA OceanColor 

group  

(NASA Goddard Space 

Flight Center, 2014) 

Vertical water velocity 

at 50m depth (m/sec) 

Visual  

Acoustic 

-8.84e-06  [-3.45e-4, 3.17e-4] 

-1.89e-05  [-3.43e-4, 2.67e-4] 

HYCOM 

(Chassignet et al., 

2009) 
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Data Weighting  

Weight ratios between visual and acoustic observations varied by species according to method and 

species-specific detectability estimates (Table 2). In general, acoustic observations received more weight 

than visual observations because each data point represented more observation time. An exception was 

Kogia spp. which has a short acoustic detection range, and therefore positive visual observations were 

weighted more heavily than acoustic observations. 

 

Table 2. Relative observation weighting parameters for acoustic and visual survey methods.  

Species Survey 

Method 

Truncation 

Distance 

(km) 

Observation 

Duration (hrs) 

Relative Weight 

(Acoustic:Visual) 

G0 

Cuvier’s beaked 

whale 

Visual  

Acoustic 

5.4 

1.3 

0.54 

24 
2.18:1 

0.29 

1 

Gervais’ beaked 

whale 

Visual  

Acoustic 

2.2 

1.0 

0.54 

24 
3.17:1 

0.29 

1 

Sperm whale 
Visual  

Acoustic 

6.8 

7.0 

0.54 

24 
55:1 

0.52 

1 

Kogia spp. 
Visual  

Acoustic 

4.0 

0.7 

0.54 

24 
0.86:1 

0.42 

1 

Stenella spp. 
Visual  

Acoustic 

5.1 

1.3 

0.54 

24 
2.3:1 

0.67 

1 

Risso’s dolphin 
Visual  

Acoustic 

5.3 

1.9 

0.54 

24 
4.5:1 

0.81 

1 

Pilot whale 
Visual  

Acoustic 

6.5 

1.9 

0.54 

24 
3.9:1 

0.67 

1 

 

Model Comparisons 

Habitat models were trained and tested on the acoustic dataset (acoustic-only models), the visual dataset 

(visual-only models), and on the combined acoustic and visual datasets (joint models).  Detailed results 

for each genus and species modeled are provided at https://goo.gl/MY65na along with open source code 

used to generate the results. Monthly distribution maps are being prepared for hosting on CetMap in early 

2018. 

Model predictions differed significantly depending on the method used. Visual-only models typically 

found weaker relationships between environmental factors and encounter rates than acoustic-only models. 

Visual models were prone to overfitting, due to low sighting rates. This effect was mitigated in part by 

developing weighting strategies to account for zero-inflation associated with missing animals not 

https://goo.gl/MY65na
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available at the sea surface. Visual-only models were not able to accurately predict encounter-rates at 

passive acoustic monitoring sites, and showed limited ability to predict spatial observations in the visual 

test set. 

Acoustic-only models were effective at predicting encounter rates in the passive acoustic test set, and 

spatial distributions observed in the visual test data, but they tended to overemphasize the influence of 

conditions observed at specific sites. This effect would likely be mitigated by the use of a larger number 

of monitoring locations.   

Joint models were a tempered combination of the acoustic and visual-only models, however joint 

predictions did not merely reflect the average of the two methods. Rather, new patterns were identified by 

running the learning algorithm on the combined datasets. Joint models were often effective at spatial and 

temporal prediction, however more data is needed to evaluate predictions in non-summer months. 

Predictive power of the various environmental factors varied by species (Table 3). Sea surface 

temperature and sea surface height were often strong predictors, while upwelling and current magnitude 

were typically weak. A range of network complexities were compared, however network predictions were 

not sensitive to small changes in hidden layer size. 

 

Table 3. Comparison of relative environmental variable influence on predicted encounters by species in 

joint habitat models. 

Environmental Driver Cuvier’s beaked whale Kogia spp. Sperm whale 

Sea surface temperature 13.4 10.3 12.9 

Sea surface height 14.1 19.7 23.6 

Chlorophyll A  21.9 19.0 13.2 

Mixed layer depth  8.5 8.4 12.0 

Salinity  14.2 12.6 16.4 

Current magnitude  7.9 8.3 6.5 

Upwelling  8.8 10.7 7.4 

Eddy Distance 1.2 11.0 8.0 

TOTAL 100 100 100 
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Figure 3. Summer 2009 Cuvier’s beaked whale distribution predicted by the joint habitat model (top) 

predicts the observed spatial distribution from the visual test data (black dots). 
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Figure 4. Predicted mean distribution of Cuvier’s beaked whale in May (top) and November (bottom) 

from joint model predictions on mean climatological conditions between 2003 and 2015. Blue location 

markers indicate deep HARP monitoring sites. 
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Discussion 

Combining passive acoustic and visual marine mammal survey data can improve habitat model 

predictions. However, combining these distinct data types requires a thorough understanding of the 

relative strength of the observations, treatment of zero-inflation, and restricting explored environmental 

drivers to conditions that are broadly variable within both datasets.  Further, non-linear relationships and 

complex interactions in these datasets make many traditional model frameworks unsuitable. We 

determined that neural networks are a promising solution for learning from mixed datasets due to their 

flexibility, minimal heuristics, and ability to learn unspecified complex interactions between drivers. 

Historically neural networks have been thought of as “black boxes”, however straightforward methods 

now exist for interpreting environmental variable importance and the interactions between variables 

within networks.  

Although the PAM sensor locations were fixed, approximately half of the oceanographic covariates were 

more varied for the PAM dataset than the visual dataset, primarily due to the year-round sampling 

capabilities of PAM. The GoMx has an extended storm season (hurricanes), which produces different 

conditions in winter and spring than those observed during the typical summer survey months. 

Differences included a deeper mixed layer and colder temperatures.  

Future work may include adding aerial survey data to include predictions over continental shelf regions, 

and future ship-board survey data planned for winter months could be used to test un-validated 

predictions outside of summer months. The visual survey dataset could be expanded to include pre-2003 

data by using climatologies for variables including salinity, MLD. Roberts et al. (2016) indicated that 

climatologies had better predictive power for visual-only models, however the use of these environmental 

averages may obscure fine-scale relationships and require an assumption of inter-annual consistency 

despite a changing climate. The addition of acoustic monitoring sites in the western GoMx and beyond 

the continental slope would likely improve model predictions and allow the use of additional relevant 

predictors including bottom depth and current direction.  

 

Conclusion 

Visual surveys and PAM are complementary marine mammal observation modalities with differing 

spatial and temporal coverage.  Habitat models were trained using both datatypes to improve forecasting 

and to estimate encounter probabilities in under-surveyed regions and seasons. Spatiotemporal marine 

mammal distribution estimates are critical for designing management frameworks that support marine 

mammal population recovery by minimizing overlap between human activities and critical habitat. 
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